ABSTRACT

Medicinal plants have been of age long remedies for human diseases because they contain components of therapeutic value. Plants are rich sources of ecologically developed secondary metabolites, which are potential remedies for different ailments. *Pedalium murex* L. (*Pedaliaceae*) is a diffuse, more or less succulent herb found near the sea coast of south India. In and around Visakhapatnam the plant is very prolific after summer rains. An infusion from leaves and stems was reported to be used in the treatment of gonorrhea and dysuria. Leaves are used for ulcers. Fresh leaves and young shoots dipped and kept for few minutes in boiling milk, such milk is used as an aphrodisiac. A decoction of the fruits was mentioned to be effective as demulcent, diuretic, antispasmodic and aphrodisiac. The decoction is useful in irritation of the urinary organs. Juice of the fruit is an emmenagogue. It contains alkaloids, a greenish fatty oil, small amount of resin and ash. Fruit contains a mucilagenous alkaloid, fat, resin, and gum. Caffeic acid, cumaric acid, daucosterol, ferulic acid, hepatatriacontonic acid, vanillic acid, ursolic acid and sitosterol were isolated from this plant. Flavonoids, triterpenoids, steroids, lipids, fatty acids, phenolic acids, amino acids and carbohydrates of *Pedalium murex* were reported. The extensive literature survey revealed that *Pedalium murex* is important medicinal plant with diverse pharmacological spectrum. The plant shows the presence of many chemical constituents which are responsible for varied pharmacological and medicinal property. Therefore, the present investigation was intended to evaluate the preliminary phytochemical characters of this plant. Phytochemical studies facilitate new discovery for the synthesis of more potent drugs.

Keywords: *Pedalium murex* L., ethnobotanical uses, pharmacognosy, pharmacological activities, Phytochemical.

INTRODUCTION: India is a varietal emporium of medicinal plants and is one of the richest countries in the world in terms of genetic resources of medicinal plants. It exhibits a wide range in topography and climate, which has a bearing on its vegetation and floristic composition. Moreover, the agro-climatic conditions are conducive for introducing and domesticating new exotic plant varieties. Since time immemorial, the traditional medicinal practices have been known for the treatment of various ailments in India. A vast knowledge about the use of plants against different illnesses may be expected to have accumulated in areas where the use of plants is still a great importance. The medicinal value of a plant lies in some of its chemical substances (phytochemicals) that produce a definite physiological action on the human body. The most important bioactive compounds of plants are alkaloids, flavonoids, tannins and phenolic compounds. Rural communities depend on plant resources mainly for herbal medicines, food, forage, construction of dwellings, making household implements, sleeping mats, and for fire and shade. The use of medicinal plants as traditional medicines is well known in rural areas of many developing countries. In developing countries, low-
income people such as farmers, people of small isolated villages and native communities use many native plants for the treatment of common diseases. An extensive survey and interaction with local ethno-pharmacologists, herbal drug sellers and rural native healers revealed that the native plants P. murex plant parts are routinely and widely used for the treatment of various ailments of humans and livestock. Traditionally Ayurveda emphasises its use to pacify vitiated vata, pitta, urinary retention, kidney stone, seminal weakness, amenorrhea, inflammation, flatulence and fever. Naturally, it tempted us to verify the traditional wisdom of local community in using these plants as herbal drugs. Further evaluations need to be carried out on Pedalium murex in order to elucidate out the appropriate uses and formulation of the plant in their practical clinical applications, which can be used for the welfare of the mankind. In fact, there are not many scientific studies that confirm the biological properties of this plant. As the phytochemical research based on the ethno-pharmacological information is generally considered an effective approach for logical conclusions. Therefore, the present investigation was intended to evaluate the preliminary phytochemical characters of this plant. Phytochemical studies facilitate new discovery for the synthesis of more potent drugs.

OBJECTIVES OF THE STUDY

1. To elucidate out a comprehensive review of the plant Pedalium murex
2. To carry out Phytochemical analysis to screen, identify, extract and isolate the phyto-constituents to evaluate the therapeutic potential of Pedalium murex.
3. To develop phytochemical standards of Pedalium murex for standardization and quality control purposes.

Drug Review: While taking the review of the Vedic literature the reference regarding “BrihatGokshura” (Pedalium murex L.) was not found in Vedic kala or Sangraha Kala. In Raja Nighantu⁹ description of KshudraGokshura and its 16 names are found along with its qualities. Dravyagunaparakashika, the hindi commentary written by Dr. Indradeva Tripathi details it as BrihatGokshura. Direct references regarding BrihatGokshura is not available in Dhanvantharinighantu. Dr S.D Kamat had mentioned Pedalium murex of pedaliaceae family in his book “Studies on medicinal Plants and Drugs”. In Dhanwantari Nighantu¹⁰, it is classified in uttarardha under “Tiladivarga” with gunas quoted from Sivadatta stating that it can be used in Sarkara, asmari, prameha, mutrakrcchra, pradara and as rasayana. He also upholds Brihatgokshura as sitavirya, snigdha, balya, mutrala, madhura and vrishya. It is classified in GuduchyadiVarga under the name of kshudragokshura in SaligramaNighantuBhushanam along with a compilation of its gunas like sakaguna, beejaguna, ksharaguna etc. In this text details of definite qualities of brihatgokshura is mentioned as seethala, balya, madhura, brumhana, vastisu dhikara, vrishya, pustikara, rasayana, agnideepaka, mutkrichara, asmarihara, daha, prameha, swasa, kasa, hridroga, arsonasaka, vastivata, tridosha, kushta and soolahara was noted. In Nighantu Adarsa¹¹, this plant has been included under TiladiVarga. A detailed description of BrihatGokshura was found in Vanaoushadhi Nidarshika¹² regarding types distribution, components, morphology, dosage and indications of the
drug. The text also mentions of the use of Brihatgokshura in Unani medicine in which the drug is called as faridbhooti, which is used as a strengthening drug. It also describes the use of Brihatgokshura instead of small gokshura was found in Rajasthan and eastern parts of India. Acharya Priyavrat Sharma on describing gokshura had mentioned Pedalium murex Linnas Brihatgokshura from pedaliaceae family Tilakula. He also ascribes that it grows near ocean and the size of it is bigger than gokshura in Dravyguna Vijnana13. Indian Medicinal Plants14 details description of pedaliaceae family with explanations regarding Brihatgokshura is given, it described in the book that the properties and synonyms of Brihatgokshura are same as that of Tribulus terestris. It also states that the fruit is considered as a demulcent and diuretic, anti-spasmodic and aphrodisiac, the decoction is useful in irritation of urinary organs; it’s given as a remedy for spermatorrhoea, incontinence of urine, and impotence. In Indian Materia Medica15, BrihatGokshura is mentioned in this book with detailed explanations of the distribution names in different languages and has explained different uses of parts with reference to its medicinal value such as burning micturition, urinary calculi, gonorrhrea, spermatorrhoea, impotence, and incontinence of urine. Pharmacological Investigations of Certain Medicinal Plants And Compound Formulations Used In Ayurveda And Siddha16, quotes from Bhavaprakasha guduchyadivarga about the paryayaguna, karma and paryaya of Brihatgokshura, it also states that Brihatgokshura is pedalium murex Linn with Paryayanamas as Trkantaka, Palankasha, SvaduKantaka. Pharmacological actions of the drug was mentioned along with information of acute toxicity study performed on albino rats the LD 50 value was 280 mg/kg i.p. Pharmacognosy Of Ayurvedic Drugs17, mentions Brihatgokshura as an adulterant to laghugokshura quoted under the title of common substitutes and adulterants. Indian Plants and Drugs with their Medicinal Properties and Uses38, text describes Pedalium murex Linn with names used in different languages of India, habitat, properties and uses in detail. Synonyms19 of BrihatGokshura (Pedalium murex Linn): It has been mentioned as, Ikshugandhika-Smell resembles aroma with that of Ikshu, Kantaphala-Fruits armed with spines, Kshuraka- Long spines like that of kshura, Gokantaka- Spine that injures grazing cattle, Chanadruma- Plant has leaves like that of Bengal gram, Trikantaka- Fruits armed with three spines, Palamkasha- Its thorn can even remove one pala of mamsa when hit, Bhakshakanta- Even if it has spine its edible, Bhookshura- Pierces like Kshura, Vanasrinkingata- Shape of the chestnut found in forest, Swadamshtra- The thorns resembles the teeth of the dog, Sadanga- Six useable parts along with thorns, Sthalasrinkingata- Fruits resembles that of water chest nut, SwaduKantaka- Fruits are edible and sweet. Vernacular20 Names are as follows, Sanskrit- BrihatGokshura, Tamil-Anainerinji, perunerunji, Hindi-Bara gokhru, Malayalam-Kathherinnil, Kakkanullu, ananerinil, Kattunerinjal, Telugu-Enugapallerumullu, Peddapaleru, EnugapalleruMulla, yenugapalleru, Kannada-Annegalugida, Aneneggiulu, Doddaneggiulu, Marathi-Motto ghokru, Mother ghokhuru, Hatti charatte,

Useful part of the plant BrihatGokshura are Fruit and Panchanga (whole plant). Dose of the drug in the form of Choorna (powder) is ¼ - ½ tola and Kwatha (decoction) is mentioned as 2 pala (96 ml).

Chemical Composition:
1. Fruit: Alkaloids 3.5%-5%, stable oil, aromatic oil, resins, glycosides, carbohydrates, saponins, triterpenoids two important flavonoids like 2’, 4’,5’ trihydroxy - 5, 7 dimethoxy flavones and triacontanyldotriacontanoate.
2. Stem: Saponins, herman, phytosterols, tannins and carbohydrates were reported from stem.
3. Root: Reducing sugars Phenolic compounds, saponins, xanthoproteins, alkaloids, triterpenoids and flavonoids. The root contains novel phenolic compounds like phenol, 2 (5,6- di methyl pyrazinyl) methyl.
4. Leaves: Flavonoids, alkaloids, steroids, resins, saponins and proteins. It also contains some important flavonoids like dinatin and 7-glucoronide, diosmetin and its 7-glucaronide, pedalitin and pedalin alkaloids, steroids, resins, saponins and proteins.
5. Flower: Quercetin, dinatin, querimctrin and an unidentified di glycoside of quercetin were reported from the flower.

Taxonomical Classification: Kingdom-Plantae, Phylum/Division – Magnoliophyta, Class-Magnoliopsida-(Dicotyledonae), Subclass- Lamiidae, Order – Caryophyllales, Family-Pedaliaceae, Genus-Pedalium, Species-Pedalium. murex Linn.

Modern Review of the Drug: Botanical Name: Pedalium murex Linn.

Morphology of Pedaliaceae Family: Herbs, rarely under shrub, Leaves: Leaves opposite or upper alternate, entire, toothed, incised or pedatifid; stipules 0; Flowers: Flowers irregular, hermaphrodite, solitary (rarely fascicled or racemose), usually axillary. Calyx-gamosepalous, usually deeply 4-5 lobed. Corolla tubular-ventricose; limb-5lobed, obscurely 2-lipped; lobes imbricate, Stamen 4, didynamous (rarely 2), Disk hypogynous, fleshy, Ovary–2(rarely 1)celled; ovules many or few superposed; style-filiform; stigma shortly 2 lobed, Fruit-Fruit hard, indehiscent, or a 2-(rarely 3-4) valved capsule, Seeds in the Indian species wingless; albumen 0 Genera 14 species 45.

Morphology of the Plant: Stems and branches are slightly rough with scaly glands, a much branched herb growing up to 15-38 cm in height. Leaves are opposite pale glaucous-green, fleshy, 2.5-5 by 2.3 -8 cm, broadly ovate oblong truncate or obtuse, coarsely crenate-serrate or sublobate, glabrous above. Lowerside is usually covered with scales, base acute; petioles 6-20mm long. Flowers are axillary, solitary; pedicles 4 mm long. Calyx small, scarcely 3mm, long minutely scaled outside, divided half way down;
lobes 5, linear-triangular, acute, corolla 2.5 cm, across at the mouth, bright yellow; tubes 2 cm, long slender; lobes broad rounded. Filaments glandular-hairy at the base. Fruit 1.3 - 2 cm long narrowed at the base pyramidal-ovoid above the spines, bluntly 4 – angled, with stout sharp conical horizontal spines from the ankles.

Distribution and Habitat: In India it’s found mainly in Kathiyawar, Gujarat, Konkan, Deccan Peninsula along western and coromandel coasts, it is found in the countries of Ceylon-Tropical Africa.

MATERIALS AND METHODS

A] Methods for Drug Collection and Authentication: Brihatgokshura was collected from the natural Habitat from Coimbatore and the plant sample was authenticated by the Department of Botany of Gauhati University, Guwahati (Assam).

B] Methods for Drug Analysis: The sample was subjected for Organoleptic, Macroscopic and Microscopic Examinations as follows;

1. Organoleptic Evaluation: Qualitative Evaluation based on the sensory profiles refers to observation by colour, odour, taste and touch. Here the sample was subjected for the organoleptic evaluations.

2. Macroscopic Study: The macroscopic study refers to the physical evaluation of the drug in terms of size, shape, surface, fracture, etc. The sample was subjected to the macroscopic study with the help of simple microscope and magnifying glass.

3. Method of Microscopic Examination: Transverse or longitudinal sections of seeds of Pedalium murex were prepared. Sections were cut with razor, moisten the surface of the seed with glycerol solution, remove the section with brush and place them on the slide. The sections were treated with various reagents before examining.

4. Methods for Powder Analysis: All the seed samples were made in to a powder using pulveriser to size of coarse powder (Passing through 60 No mesh). Then all the powder samples were subjected for Macro and Microscopic examination. Then powder of the sample was tested for organoleptic characters like Colour, Appearance, Taste, Odour and Fineness. Examination for Lignin was done by moistening the powder with an alcoholic solution of Phloroglucinol and allowed to stand until nearly dry, added concentrated Hydrochloric acid. Apply a cover glass and examine. Note the presence or absence of lignified vessels, fibers, parenchyma, sclerieds or hairs.

5) Methods for Determination of Foreign Matter: Weighed 100 gm of the drug sample to be examined spread it out in a thin layer. The foreign matters were detected by inspection with the unaided eye or by the use of lens 5x, separated, weighed and calculated the percentage.

6) Methods for Ash Value Estimation: Weighed accurately 2 grams of the air dried drug in a tare platinum or silica dish and incinerated at a temperature not exceeding 450°c for 3 hours until free from carbon, cool and weigh. Calculated the percentage of ash with reference to air dried drug.

7) Methods for Determination of Sulphated Ash: Heated a silica crucible to redness for 10 minutes; allowed cooling in a desiccators and weighed. Then 2 g of the substance was accurately weighed into the crucible; ignited gently at first and then until the substance was thoroughly charred. Cooled, moistened the residue with 1 ml of sulphuric acid, heated gently until white fumes were no longer evolved and ignited at 800 ± 250 until all black particles disappeared. Ignition was
conducted in a place protected from air currents. Allowed the crucible to cool, added a few drops of sulphuric acid and heated. Ignited as before, allowed cooling and weighed. Repeated the operation until two successive weighing did not differ by more than 0.5mg.

8) Methods for Determination of Acid Soluble and Insoluble Ash: The ash obtained by the method mentioned above was boiled. Added 25 ml of dilute hydrochloric acid for 5 minutes. Collected the acid insoluble ash in a pre-weighed crucible along with the ash less filter paper kept in muffle furnace for an hour at around 450°C ± 5°C. Calculated the percentage of acid insoluble ash with reference to the air dried drug.

Acid insoluble ash = Weight of ash x 100
Original sample weight

9) Methods for determination of water soluble and insoluble ash: Boiled the ash for 5 minutes with 25 ml of water; collected insoluble matter in an ash less filter paper, washed with hot water, and ignited for 15 minutes at a temperature and calculated percentage of water soluble ash with reference to the air dried drug.

10) Methods for Extractions: Powder sample was subjected for Cold maceration method for extraction.

a) Alcoholic Extraction:
 Equipments - Conical Flask: 2-litre Capacity.
 - Silver Foil, Filter Paper
 - Emulsion cloth.
 Other materials: (a) Filter Paper (b) 500 ml beaker (c) Glass funnel
 Ingredients: Seed powder 5 gms and 100ml Ethanol
 Procedure:Macerated 5 g of the air dried drug, coarsely powdered, with 100 ml of Ethanol in a closed flask for twenty-four hours, shaking frequently during six hours and allow to stand for eighteen hours. Filtered rapidly, taking precautions against loss of solvent, evaporated 25 ml of the filtrate to dryness on water-bath in a tared flat bottomed shallow dish, and dry at 105º, then cooled it.

b) Aqueous extraction (water extract):
 Equipments - Conical Flask: 2-litre Capacity.
 - Silver Foil, Filter Paper
 - Emulsion cloth.
 Solvent - Distilled Water
 Ingredients – 5 gm seed powder and Water (As required)
 Procedure:Macerated 5 g of the air dried drug, coarsely powdered with 100 ml of Distilled Water in a closed flask for twenty-four hours shaking frequently during six hours and allowed to stand for eighteen hours. Filtered rapidly, taking precautions against loss of solvent, evaporated 25 ml of the filtrate to dryness on water-bath in a tare flat bottomed shallow dish, and dried at 105º, then cooled it.

11. Methods for preliminary phytochemical screening: Both, aqueous and alcohol extracts were subjected for qualitative preliminary phytochemical screening:

a) Test for Reducing Sugars (Benedict’s test): Mixed equal volume of Benedict’s reagent and test solution in the test tube and heated on water bath for 5 minutes. Solution appears green, yellow or red depending on amount of reducing sugar present in test solution.

b) Test for monosaccharides (Barfoed’s test): Mixed equal volume of Barfoed’s reagent and test solution. Heat for 1-2-min. on water bath and cool it. Red precipitate is observed.
c) Test for pentose sugars (Bial’s Orcinol test): To boiling Bial’s reagent added few drops of test solution. Green or purple coloration appears.

d) Test for hexo sugars (Selwinoff’s test): Heated 3 ml Selwinoff’s reagent and 1ml. test solution on water bath for 1-2 min. Red colour is formed.

e) Test for proteins (Million’s test): Heated 3 ml Million’s reagent 1ml. test solution.

f) Tests for steroids (Salkowski reaction): To 2 ml of extract, add 2 ml of chloroform and 2 ml concentrated H₂SO₄ were added. Shaked well. Chloroform layer appears. Red and acid layer shows greenish yellow fluorescence.

g) Test for alkaloids (Wagner’s Test): To 2-3 ml of filtrate with few drops of Wagner’s Reagent shows reddish brown ppt.

h) Tests for tannins and phenolic compounds: To 2 – 3 ml of aqueous or alcoholic extracts, add few drops of following reagents: 5% FeCl₃ solution deep blue-black colour.

12. Test for Inorganic Elements: The ash of drug was taken in a test tube and 50% HCl v/v or 50% HNO₃ v/v was added to. Keep for 1 hr. filter and with filtrate performed following tests.

Test for Sodium- To 10 ml filtrate add 2 ml of potassium pyroantimonate gives white precipitate.

Test for Potassium- To 2-3 ml test solution, add few drops of sodium cobalt nitrite solution. Yellow precipitate of potassium cobalt nitrite observed.

Test for Iron – To 5 ml test solution add few drops of 5% ammonium thiocyanate solution turns blood red.

Test for Calcium- Filtrate with solution of ammonium carbonate gives white precipitate which is insoluble in ammonium chloride solution.

Test for Chloride – To 3 ml test solution prepared in HNO₃ add few drops of 10%Ag No₃ soln. White precipitate. Of AgCl₂ observes which is soluble in dilute ammonia solution.

Test for Sulphate – To 5ml filtrate, add few drops of 5% BaCl₂ solution white crystalline BaSO₄ ppt. Appears that is insoluble in HCl.

RESULTS: Table 1. BrihatGokshura fruit powder microscopy:

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Character</th>
<th>Recorded details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Trichome</td>
<td>Uniseriate, sessile</td>
</tr>
<tr>
<td>2</td>
<td>Cork cells</td>
<td>Stomata absent</td>
</tr>
<tr>
<td>3</td>
<td>Stone cells</td>
<td>Horse shoe shaped</td>
</tr>
<tr>
<td>4</td>
<td>Crystals</td>
<td>Prismatic</td>
</tr>
<tr>
<td>5</td>
<td>Vessels</td>
<td>Pitted, spiral</td>
</tr>
<tr>
<td>6</td>
<td>Tracheids</td>
<td>Present</td>
</tr>
</tbody>
</table>

Table .2 Physico chemical analysis:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Recorded Value</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreign matter</td>
<td>6.118%</td>
<td>NA</td>
</tr>
<tr>
<td>Total Ash value</td>
<td>3.178%</td>
<td>NA</td>
</tr>
<tr>
<td>Acid insoluble Ash</td>
<td>1.209%</td>
<td>NA</td>
</tr>
</tbody>
</table>

Table .3 Extractive values of BrihatGokshura fruit:

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Solvent</th>
<th>Extractive Value recorded</th>
<th>API standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Water</td>
<td>0.632%</td>
<td>Not less than 7%</td>
</tr>
<tr>
<td>Sl. no</td>
<td>Test</td>
<td>Result</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Test for Iron: Test soln. + Ammonium thiocynate</td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>
| 2. | Test for Calcium
a) Solution + Ammonia + Potassium ferrocynade
b) Ammonium carbonate solution + filtrate = insoluble in Ammonium chloride solution | + |
| 3. | Test for Sodium: Test soln. + Potassium pyroantimonate | + |
| 4. | Test for Chlorides: Test soln. + AgNO₃ | - |
| 5. | Test for Potassium: Test soln. + Sodium cobalt nitrate | - |
| 6. | Test for Sulphates: Test soln. + 5% BaCl₂ Solution | - |

Table .5 Preliminary phytochemical screening:

<table>
<thead>
<tr>
<th>Sl.no</th>
<th>Name of Test</th>
<th>Alcoholic Extract</th>
<th>Aqueous Extract</th>
</tr>
</thead>
</table>
| 1. | Test for Carbohydrates:
a) B Benedict’s Test
b) Fehling’s Test
c) Molish Test | - | - |
| 2. | Test for pentose sugars | Soln + HCl + Phloroglucenol | + | + |
| 3. | Test for Hexose sugars Selvinoff’s Test | - | - |
| 4. | Test for non-reducing Sugars 3ml soln. + few drops of Iodine | + | + |
| 5. | Test for Tannins & Phenolic compounds | - | - |
| 6. | Test for Alkaloids: Wagner’s reagent | - | - |
| 7. | Test for Steroids: Salkowski reagent | - | - |
| 8. | Test for Proteins & amino acids: Million’s test | - | - |
| 9. | Test for Flavonoids With NaOH
With H₂SO₄ With Mg/HCl | - | - |

Table .6 HPTLC ANALYSIS PROFILE:

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Sample</th>
<th>Rf Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>01.</td>
<td>BrihatGokshura</td>
<td>0.62</td>
</tr>
</tbody>
</table>

Table .7 Rf value in 366 nm after derivatization

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Sample</th>
<th>Rf Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>01.</td>
<td>BrihatGokshura</td>
<td>0.82</td>
</tr>
</tbody>
</table>

Table .8 Rf value in after spray

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Sample</th>
<th>Rf Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>01.</td>
<td>BrihatGokshura</td>
<td>0.17, 0.2, 0.29, 0.35, 0.50, 0.62, 0.73, 0.79</td>
</tr>
</tbody>
</table>
PHYSICOCHEMICAL ANALYSIS:
Foreign matter Content was 6.118% in the collected sample. The section cutting of the fruit of Brihatgokshura was difficult so powder microscopy was done. The parameters like, total ash (3.178%), acid insoluble ash (1.209%), water soluble within standards shows standard quality of the drug. The aqueous & alcohol extractive values were 0.632%, 18.524%, respectively. It shows the amount of ingredients extracted in the water as compared to alcohol, in alcohol extract the amount of ingredients extracted was more than the aqueous extract. Alcoholic extractive methods as that of arishta and asava may prove to be more effective than that of kwatha or aqueous extract in case of BrihatGokshura.
Preliminary Phyto-chemical tests show presence of Steroids, alkaloids reducing sugar present in both Alcoholic and Aqueous extract but absence of proteins, monosaccharides, pentose sugars in both the extracts. Presence of hexose sugars, Phenolic compounds and tannins only in alcoholic extract but absent in aqueous extract. The presence of hexose sugar, reducing sugar shows sweet taste of root. HPTLC of BrihatGokshura has shown only one ingredient is separated at same RF at 0.82 in both the extracts. Otherwise all the ingredients separated in aqueous as well as alcoholic are at different rf. The active ingredient separated in alcoholic is more as compared to aqueous because of high extractive value in alcohol.

DISCUSSION
According to ancient research methodology, prior to establishing any theory, Upanaya (Discussion) is the step preceding Nigamana (Conclusion). Botanical identity of Pedalium Murex is correlated with BrihatGokshura by almost all the contemporary texts. There is a controversy related to the authenticity of BrihatGokshura (Pedalium murex Linn) and Small variety Gokshura (Tribulus terrestris Linn). This study was undertaken assuming that Brihatgokshura is Pedalium murex Linn. The fruit was collected as told by acharyaCharaka, as ‘yathaRitu’ according to the season of fruiting.

Conclusion: These studies revealed that P. murex is a source of medicinally active compounds and have various pharmacological effects, hence, the plant encourages finding its new therapeutic uses. Dinatoin glycoside and diosmetin glucuronides are isolated from the leaves of P. murex. Recently, two new compounds are isolated from the fruits Heptatriacontan-4-one, tetraatriacontanyl octacosanoate. The decoction of root is used as antibiliary. 2′,4′,5′-trihydroxy 5,7-dimethoxy flavones and triacotanyldotriacontanoate were isolated from the fruits. It is also used in the treatment of urogenital disorders. The extensive literature survey revealed that Pedalium murex is important medicinal plant with diverse pharmacological spectrum. This study of the plant shows the presence of many chemical constituents which are responsible for varied pharmacological and medicinal property. This plant can be explored as biopesticidal plant in the near future and potent fertility enhancing drug. The article will help the researchers of Ayurveda as well as in other field of Bio-medical sciences to explore more about the said tree for the larger benefit of society.

REFERENCES:
18. Dr K.M.Nadkarni,F.S.Sc.L.A“Indian Plants And Drugs with their medicinal properties and uses” Printed by Asiatic Publishing House, New Delhi India,3rd Impression,Page no: 289.

Corresponding Author:
Dr. Biswa Jyoti Bora,
Educational Qualification: BAMS, MD
Address: Dept. of DG, Govt. Ayurvedic College, Guwahati (Assam) – 781014, India
E-Mail: drbiswajyotibora@gmail.com

Source of support: Nil Conflict of interest: None Declared

PHOTOGRAPHS

1. (a) Pedalium murex Plant Seeds
1. (b) Pedalium murex Raw Seeds
1. (c) Pedalium murex Dry

Fig. 1: Pedalium murex Plant with seeds

1. (a) Stone Cells
2. (b) Sessile Trichome
2. (c) Multiserrate Trichomes
2. (d) Multiserrate Trichomes
2. (e) Reticulate Vessels
2. (f) Pitted Vessels

Fig. 2: Pedalium murex seeds powder microscopy

Image @254 nm
Image @366 nm
Image @white emission

Fig. 3: TLC of Pedalium murex